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Ground state of a Bose-Einstein condensate which scatters
coherently laser radiation
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Abstract. We present a self-consistent method of taking into account back action of a laser radiation to a
Bose-Einstein condensate of neutral atoms. The light is coherently scattered inside the degenerate atomic
sample, thus its intensity and, consequently, the atomic ground level AC Stark shift are spatially varying.
This leads to a small deformation of the atomic cloud and, if the external radiation is abruptly switched
off, to generation of collective excitations.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 32.80.-t Photon
interactions with atoms – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions

1 Introduction

Bose-Einstein condensation in dilute atomic vapour has
become, since its first experimental demonstration in 1995
[1–3], an important subject of modern physical studies. It
is an unique possibility to get an ensemble of nearly 106

magnetically trapped atoms all being in the same quan-
tum state of center-of-mass motion. Such a medium is a
degenerate system of weakly interacting particles which
behaves as a quantum fluid possessing many spectacular
features. It is very important that a straightforward the-
oretical analysis of various properties of a Bose-Einstein
condensate (BEC) of neutral atoms is possible, and the
predictions can be tested experimentally.

The most informative methods of experimental study
of BEC of neutral atoms are laser spectroscopic ones. Dur-
ing the very beginning of these researches an absorption
(destructive imaging) was used [1,4]. However, there is
a possibility of a non-destructive testing of a BEC sam-
ple by measuring a position-dependent phase shift of a
far-resonant laser light transmitted without significant ab-
sorption. Such a method was adapted to BEC diagnostics
in reference [5], and its further applications include pro-
duction of impressive images of sound waves in a BEC [6],
precise determination of an atomic cloud shape [7] demon-
strating an excellent agreement with the mean-field theory
of a BEC ground state [8] and providing a significant im-
provement in experimental determination of the s-wave
scattering length of sodium atoms, and detection of Bose-
Einstein condensation in a vapour of 7Li, an element with
a negative scattering length which admits a metastable
BEC existence only if the total number of atoms in the
sample is less than 1300 [9].
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From the point of view of spectroscopy, a total elimina-
tion of inhomogeneous broadening is very interesting. The
recent work on slowing the group speed of light in such a
degenerate atomic ensemble down to 17 m/s by means of
electromagnetically induced transparency [10] has stressed
once again new prospectives for atomic physics and non-
linear optics opened due to novel achievements both in
theory and experiment dealing with ultracold atoms.

It is widely believed that back action of laser light to
BEC can be neglected provided that the number of ab-
sorbed photons is much less than the total number N of
atoms and the angle of coherent scattering and, hence, the
kinetic momentum transferred from a photon to an atom
are small. The measurements of reference [9] made using
relatively large laser intensity (250 mW/cm2) and moder-
ate detuning (between 20 and 40 radiative halfwidths of
the absorption line) were an example of obvious violation
of the latter condition and, therefore, significant heating
of atoms after a single shot of the probe laser.

The subject of the present paper is to estimate a back
action of laser radiation to a BEC in a case when these
effects only modify but do not destroy degeneracy of an
ultracold ensemble of bosonic atoms in a magnetic trap.

2 Basic equations

The existing theories of light coherent scattering by a BEC
of neutral atoms assume that the BEC ground state is not
changed by an external radiation [11,12]. This assumption
simplifies the analysis very much and seems to be very nat-
ural. Indeed, an atom excited by the incident electromag-
netic wave (kL = ωL/c is the wavenumber, c is the speed
of light) preferably emits a photon into a small body angle
of order of (kLR)−1 � 1, where R is the condensate size,
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and returns to the condensate because the probability of
such a process is enhanced in proportion to the total num-
ber of atoms N � (kLR)2 by the Bose-Einstein statistics.
Only very small fraction (approximately (kLR)2/N) of
photons is scattered incoherently, so atomic sample heat-
ing and subsequent decrease of number of atoms in con-
densate are quite slow processes.

Nevertheless, there is a cause of modification of the
macroscopic wave function of atoms composing a BEC
under action of laser radiation tuned from resonance far
enough to prevent significant absorption. Namely, if the
light is refracted inside the atomic cloud then its intensity
varies in space. This means that the AC Stark shift of the
atomic ground state is also spatially non-uniform and acts
as an addend to the trap potential. The value of AC Stark
shift can be expressed easily via the local light intensity
I, the laser detuning ∆, the halfwidth γ of the incoherent
scattering line, and the photon absorption cross-section
σ ≈ 2πk−2

L at the line center. This term should be added to
the set of equations of quantum hydrodynamics of a BEC
(see, e.g., the review [13] and references therein) which is
equivalent to the Gross-Pitaevsky equation for the BEC
macroscopic wavefunction Ψ =

√
n exp(iφ), where n is the

condensate local density, the phase φ is related to the hy-
drodynamic velocity v as ∇φ = Mv, M is the atomic
mass. We use the system of units where

~ = 1,

i.e. express energy in inverse seconds. Thus

∂

∂t
n+∇(nv) = 0, (1)

M
∂

∂t
v+∇

(
M

2
v2− 1

2M
√
n
∇2√n+U+gn+

Iσγ

2ωL∆

)
=0.

(2)

Here the constant g = 4πa/M characterizes the interac-
tion between atoms, a > 0 is the s-wave scattering length
(in the present paper only a repulsive interaction case is
considered). The harmonic trap potential is assumed to
be cylindrically symmetric,

U =
M

2
ω2

tr

[
r2 + (z/Λ)2

]
, (3)

where r =
√
x2 + y2 is the transverse radial co-ordinate,

Λ is the dimensionless aspect ratio.
The set of equations (1, 2) should be supplied by the

equation of electromagnetic wave propagation. We denote
the complex electric field value by Ẽ, so I = (c/8π)|Ẽ|2.
To describe its variation in space and time, we apply the
same equation as that of reference [12], where it serves a
starting point for development of a generalized diffraction
theory with respect to optical properties of BEC:(

∇2 − 1
c2
∂2

∂t2

)
Ẽ =

γ

∆
kLσnẼ. (4)

Our approach is, in fact, a next step in the theoretical
research direction outlined by reference [12]. Equation (4)
not only yields an asymptotic solution describing the scat-
tered wave far from the BEC but also can be used for eval-
uation of light field parameters inside the atomic cloud
with the local density n.

Let us consider a stationary solution for a trapped
atomic BEC interacting with a monochromatic radiation
Ẽ = E exp(iωLt), where E is a time-independent complex
amplitude. Thus, v=0 and n does not depend on t, the
set of equations (1, 2, 4) reduces to

µ̃ = − 1
2M
√
n
∇2√n+ U + gn+

Iσγ

2ωL∆
, (5)

∇2E + k2
LE =

γ

∆
kLσnE. (6)

Since the light is scattered by the BEC to small angles, the
geometric optics approximation [14,15] is adequate to our
problem. It is important to note that this approach works
perfectly inside the finite-size atomic cloud. Oppositely, at
large distances, a simple picture of light rays those do not
cross each other is not valid. However, behaviour of the
light in this far zone is irrelevant to our problem of deter-
mination of AC Stark shift inside the BEC. We introduce
the eikonal function ζ which obeys the following equation:

(∇ζ)2 = 1− γσn

kL∆
· (7)

Also we define the unit vector s directed along the light
ray passing through a given point of space, ∇ζ = |∇ζ| s.
Then the equation for the light intensity takes a simple
form

∇(Is) = 0. (8)

For a sake of simplicity, we assume that the incident plane
light wave (its intensity is denoted by Iin) travels along z,
the symmetry axis of the trap.

3 Elimination of the electromagnetic field
variables

Further simplifications can be made after one notes that,
for the realistic values of n ∼ 1012 cm−3, kL ∼ 105 cm−1,
and |∆| � γ the second term in the right hand side of
equation (7) is very small compared to unity. Then we
can get that the vector s nearly coincides with the unit
vector ez in z-direction,

s = ez + δs, (9)

and for the difference the following equation holds:

∂

∂z
δs = − γσ

2kL∆
∇⊥n. (10)



I.E. Mazets: Ground state of a BEC which scatters light 373

Here ∇⊥ is the two-dimensional gradient operator in the
perpendicular (x, y) plane. In the linear order with re-
spect to the small parameter γnk−3

L /∆ we can write
∇s = ∇⊥δs. Then equation (8) can be solved easily:

I = Iin exp
(

γσ

2kL∆
Ξ̂(n)

)
. (11)

Here we introduce the operator

Ξ̂(n) =
∫ z

−∞
dz′∇2

⊥

∫ z′

−∞
dz′′ n(r, z′′). (12)

Due to axial symmetry of the system, the two-dimensional
transversal Laplacian ∇2

⊥ reduces to 1
r
∂
∂rr

∂
∂r .

Now we can substitute equation (11) into equation (5)
and thus get an equation containing the unknown func-
tion n only. Since the argument of the exponent in equa-
tion (11) is small, |I − Iin| � I, we expand I up to the
term linearly proportional n. The constant part of the AC
Stark shift is extracted from the chemical potential,

µ = µ̃− Iinσγ

2ωL∆
· (13)

Namely, µ ought to be compared directly to the chemical
potential of an atomic Bose-gas in a trap with no external
radiation. Finally,

µ = − 1
2M
√
n
∇2
√
n+ U + gn+ fgΞ̂(n). (14)

The dimensionless parameter

f =
Iinσ

2γ2

4gωLkL∆2
(15)

characterizes the relative (compared to repulsive inter-
atomic interaction) contribution of spatially non-uniform
light shift to the balance of all the forces determining the
equilibrium state of the BEC. It is worth to note that f is
always positive for positive g, regardless to the sign of ∆.

Let us make some comments to equations (14, 15) and
begin with evaluation of the parameter f . Firstly, writing
the Stark shift in the form (Iσγ)/(2ωL∆) = |DE/2|2 /∆,
where D is the transition dipole moment and γ is the ab-
sorption line halfwidth, one assumes that the laser detun-
ing is of order of Γ or larger. Here (2Γ )−1 is the lifetime of
the excited state of an atom reduced from the value (2γ)−1

by a factor of about N(kLR)−2 because photon scattering
by a BEC is an essentially collective process [11,12] (simi-
larly, such a bosonic enhancement of the forward coherent
scattering of photons leads to a small decrease of the inco-
herent absorption line width 2γ with respect to its usual
value (4/3)D2k3

L; the difference is of order of γ/(kLR)2

[12]). So, in a case when the laser detuning is less than Γ
our simple treatment overestimates the AC Stark shift.

Secondly, for realistic experimental conditions, we es-
timate Γ/γ ∼ 102. We can represent f as a product of the
two quantities, W = Iinω

−1
L σ(γ/∆)2 and Tg = σ/(4gkL).

One can find easily that the optical excitation rate W
does not exceed the value (Iin/Isat)×103 s−1 where Isat is
the saturation intensity of the resonant atomic transition.
For the D1-line of an alkali atom Isat ∼ 10 mW/cm−2.
As follows from s-wave scattering length measurements
for Na [7,16] and 87Rb [17], the repulsive interaction con-
stant is of order of 10−10 cm3 s−1. Hence, Tg ∼ 10−5 s and
f ∼ 10−2Iin/Isat.

Also we should check validity of the steady-state ap-
proach. Indeed, if the laser detuning is too small or the
intensity is too high then the photon absorption rate dif-
fering from the Stark shift by the factor Γ/ |∆| . 1 may
exceed the trap frequency ωtr which determines the rate
of hydrodynamic non-stationary motion in the BEC. This
means that the BEC is destroyed before its shape changes
significantly under the action of the laser radiation. There-
fore, we assume hereafter that the restriction

f � 1 (16)

holds. Equation (16) means, in particular, that the exter-
nal radiation influence to BEC shape can be neglected if
BEC is very dilute, so the mean-field potential gn is small
compared to the “quantum pressure” −(1/2M

√
n)∇2

√
n.

Oppositely, it makes a sense to study such an influence
within the Thomas-Fermi approximation when the “quan-
tum pressure” is negligible. Thus equation (14) takes the
following form:

µ = U + gn+ fgΞ̂(n). (17)

4 Results and discussion

Equation (17) admits, most probably, no exact analytic
solution. Nevertheless, there is a physically transparent
way to solve it by iterations, provided that equation (16)
is valid. Namely, we consider the chemical potential µ as
a fixed parameter. As an initial approximation we choose
the local density n0 for the BEC in a case of absence of
the external radiation:

n0 =
1
g

(µ− U), (18)

if U < µ, otherwise n0 = 0. The expression for the number
density nj obtained after the jth iteration is similar to
equation (18):

nj =
1
g

(µ− Uj), (19)

if Uj < µ, and nj = 0 otherwise. Here the effective poten-
tial

Uj = U + fgΞ̂(nj−1) (20)

contains the AC Stark shift calculated using the BEC
number density obtained at the previous iteration. Solu-
tion of equation (17) by this method was performed nu-
merically. For various values of f after 14 iterations we
got |nj − nj−1| < 10−9 max(nj) or even better accuracy.
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If there were no external radiation, the number of
atoms in the BEC would be

N0 =
8πΛµR3

15g
· (21)

for a given µ [8]. Here the condensate size R in the trans-
verse direction obeys the formula

R =

√
2µ
Mω2

tr

· (22)

Analysis shows that for non-zero f the actual total num-
ber N of atoms in a BEC is larger than N0 defined for the
same µ, and (N −N0)/N is non-vanishing already in the
first order in f . From the other hand, one may investigate
an influence of the radiation scattering to the shape of
BEC consisting from the given number N of atoms. If the
light intensity were constant throughout the atomic cloud
the total chemical potential µ̃ would increase by the value
of AC Stark shift, i.e. the reduced quantity µ defined by
equation (13) would remain unchanged. However, both the
light field and the BEC macroscopic wavefunction are al-
lowed to alter in a self-consistent way. It results in a small
negative correction to the chemical potential µ compared
to a BEC consisting of the same number N of atoms but
not irradiated by a laser light.

In Figure 1 the numerical results for different set of
parameters are displayed. The horizontal axes correspond
to the z and r co-ordinates divided by the characteristic
size R defined by equation (22). The vertical axis represent
the dimensionless density difference

δn =
g

µ
(n− n′), (23)

where n′ is the density of a BEC which consists of the
same number N of atoms but is not irradiated by a
laser light. Its chemical potential is therefore larger: µ′ =
µ(N/N0)2/5. So n′ is calculated using a formula similar to
equation (18) but with µ′ placed instead of µ. The dimen-
sionless density difference δn characterizes displacement of
the BEC under the action of the laser light compared to
its equilibrium state in the absence of external radiation.

One can see from that the displaced fraction of the
BEC is of order of fΛ2. If the laser is abruptly switched
off then, after a transient process of free induction decay
has been completed on a time scale of about Γ−1 � ω−1

tr ,
the BEC occurs in a collective excitation state [18] and
begins to oscillate. It is interesting to note that a short in-
tense pulse being absorbed in an optically thin BEC causes
spatially uniform decrease of the local density which also
leads to a BEC collective excitation but of another kind
(breathing mode-like instead of a dipole one).

The numerical results illustrate a certain scaling in-
variance of solution. This property of equation (17) can
be easily derived if we take into account a harmonic form
of the trap potential U . Namely, if the aspect ratio Λ is
changed to Λ1, f is changed to f(Λ/Λ1)2 then, for a fixed
µ, N/N0 remains constant and the number density n (and,
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Fig. 1. Dimensionless density difference δn versus r, z co-
ordinates, (a) Λ = 1, f = 0.01, (b) Λ = 10, f = 0.0001.

hence, δn) scales in proportion to Λ/Λ1. The ratioN/N0 is
equal to 1.02128 for the set of parameters of Figure 1. For
f and Λ being varied so that fΛ2 = 0.0033 is kept con-
stant, our numerical simulations give N/N0 = 1.00647.
Also our iterative method of solving the equation (17) is
found to be divergent for fΛ2 & 0.012, even in its modi-
fied form which uses the following expression for the jth
iteration:

(1 + α)nj = αnj−1 +
1
g

(µ− Uj) (24)

(here α is a number which can be taken negative as well as
positive). It is not clear whether it is simply a disadvantage
of the method or it means that solutions for larger values
of fΛ2 have really new distinctive features.

It is interesting to compare back action to a BEC
caused by coherent and incoherent light scattering. The
latter process has been recently analysed theoretically
[19]. The authors of reference [19] used the paraxial ap-
proximation to describe laser radiation propagation in a
BEC. From their approach, which includes quantization
of the electromagnetic field, a master equation for the
bosonic atoms density matrix follows. Coherent light scat-
tering is not considered in reference [19], but all the at-
tention is paid to dissipative processes, namely, to phase
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diffusion and depletion of a BEC. Since characteristic size
of a BEC sample is much larger than the laser radiation
wavelength, depletion is the dominant dissipative process.
The depletion rate found in reference [19] can be written,
in notation used in our paper, as

2wD =
1
8

( γ
∆

)2 σI

ωL
(25)

and represents, in essence, the rate of incoherent scatter-
ing of photons by an atom in the case of large detuning.
The small factor 1/8 appears, probably, because of the
approximation used in reference [19] which considers only
paraxial electromagnetic field modes. In any case, this fac-
tor is not very significant, and we can estimate, by the
order of magnitude, the depletion rate as

2wD ∼ fgk3
L. (26)

Typically, g ∼ 10−11 s−1 cm3, kL ∼ 105 cm−1. Thus we
obtain 2wD ∼ f × 104 s−1.

To provide significant momentum transfer from the
laser light to the BEC by the coherent mechanism anal-
ysed in our present paper, the total radiation exposure
time Trad should be of order of the period of the BEC
dipole oscillations, at least. So, we accept the following
estimation: Trad ∼ 0.01 s. After a laser pulse of such a
duration has passed, the fraction of atoms still remain-
ing in condensate is equal to exp(−2wDTrad). If f = 0.01,
then the BEC looses more than a half of its initial pop-
ulation. In this case back actions caused by coherent and
incoherent processes are of comparable magnitude. But
for f = 0.0001 depletion is of order of one per cent only,
and the BEC interaction with the radiation is essentially
coherent. Of course, if the light exposure time is increased,
the dissipative processes become more important.

To conclude, we can say that in the present work a
self-consistent approach to back action of laser light to
a BEC of neutral atoms is developed using two main
assumptions: stationarity and negligible light absorption.
Study of time-dependent processes including collective
oscillation generation in the BEC during switching on the
laser and those arising from BEC population losses due to

incoherent photon scattering are to become a subject of
future works.

This work is supported by the Russian Foundation of Basic
Researches, project No. 99–02–17076.
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